MA101BS: MATRICES AND CALCULUS

B.Tech. I Year I Sem. L T P C 3 1 0 4

Pre-requisites: Mathematical Knowledge at pre-university level

Objectives: To learn

- 1. Applying basic operations on matrices and their properties.
- 2. Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- 3. Concept of eigen values and eigen vectors and to reduce the quadratic form to canonical form
- 4. Geometrical approach to the mean value theorems and their application to the mathematical problems
- 5. Finding maxima and minima of functions of two and three variables.
- 6. Evaluation of multiple integrals and their applications.

Course outcomes: After learning the contents of this paper, the student must be able to

- 1. Write the matrix representation of a set of linear equations and to analyze the solution of the system of equations
- 2. Find the Eigen values and Eigen vectors
- 3. Reduce the quadratic form to canonical form using orthogonal transformations.
- 4. Solve the applications of the mean value theorems.
- 5. Find the extreme values of functions of two variables with/ without constraints.
- 6. Evaluate the multiple integrals and apply the concept to find areas, volumes.

UNIT-I: Matrices 8 L

Rank of a matrix by Echelon form and Normal form – Inverse of Non-singular matrices by Gauss-Jordan method. System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations. Gauss Seidel Iteration Method.

UNIT-II: Eigen values and Eigen vectors

10 L

Linear Transformation and Orthogonal Transformation: Eigen values – Eigen vectors and their properties – Diagonalization of a matrix – Cayley-Hamilton Theorem (without proof) – Fnding inverse and power of a matrix by Cayley-Hamilton Theorem. Quadratic forms and Nature of the Quadratic Forms – Reduction of Quadratic form to canonical form by Orthogonal Transformation.

UNIT-III: Single Variable Calculus

10 L

Limit and Continuous of functions and its properties. Mean value theorems: Rolle's theorem – Lagrange's Mean value theorem with their Geometrical Interpretation and applications – Cauchy's Mean value Theorem – Taylor's Series (All the theorems without proof).

Curve Tracing: Curve tracing in cartesian coordinates.

UNIT-IV: Multivariable Calculus (Partial Differentiation and applications)

10 L

Definitions of Limit and continuity – Partial Differentiation: Euler's Theorem – Total derivative – Jacobian - Functional dependence & independence. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

UNIT-V: Multivariable Calculus (Integration)

10 L

Evaluation of Double Integrals (Cartesian and polar coordinates) - change of order of integration (only Cartesian form) - Change of variables for double integrals (Cartesian to polar). Evaluation of Triple Integrals - Change of variables for triple integrals (Cartesian to Spherical and Cylindrical polar coordinates). Applications: Areas by double integrals and volumes by triple integrals.

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2016.

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint, 2002.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi.

CH102BS: ENGINEERING CHEMISTRY

B.Tech. I Year I Sem. L T P C

Course Objectives:

- 1. To develop adaptability to new advances in Engineering Chemistry and acquire the essential skills to become a competent engineering professional.
- 2. To understand the industrial significance of water treatment, fundamental principles of battery chemistry, and the impact of corrosion along with its control methods for structural protection.
- 3. To impart foundational knowledge of various energy sources and their practical applications in engineering.
- 4. To equip students with an understanding of smart materials, biosensors, and analytical techniques applicable in engineering, industrial, environmental, and biomedical fields.

Course Outcomes:

- 1. Students will be able to understand the fundamental properties of water and its applications in both domestic and industrial purposes.
- 2. Students will gain basic knowledge of electrochemical processes and their relevance to corrosion and its control methods.
- 3. Students will comprehend the significance and practical applications of batteries and various energy sources, enhancing their potential as future engineers and entrepreneurs.
- 4. Students will learn the basic concepts and properties of polymers and other engineering materials.
- 5. Students will be able to apply the principles of UV-Visible, IR spectroscopy and Raman spectroscopy in analyzing pollutants in dye industries and biomedical applications.

UNIT-I: Water and its treatment: [8]

Introduction- Hardness, types, degree of hardness and units. Estimation of hardness of water by complexometric method - Numerical problems. Potable water and its specifications (WHO) - Steps involved in the treatment of potable water - Disinfection of potable water by chlorination and breakpoint chlorination. Defluoridation - Nalgonda technique.

Boiler troubles: Scales, Sludges and Caustic embrittlement. Internal treatment of boiler feed water - Calgon conditioning, Phosphate conditioning, Colloidal conditioning. External treatment methods - Softening of water by ion- exchange processes. Desalination of brackish water – Reverse osmosis.

UNIT-II: Electrochemistry and Corrosion: [8]

Introduction- Electrode potential, standard electrode potential, Nernst equation (no derivation), electrochemical cell - Galvanic cell, cell representation, EMF of cell - Numerical problems. Types of electrodes, reference electrodes - Primary reference electrode - Standard Hydrogen Electrode (SHE), Secondary reference electrode - Calomel electrode. Construction, working and determination of pH of unknown solution using SHE and Calomel electrode.

Corrosion: Introduction- Definition, causes and effects of corrosion – Theories of corrosion, chemical and electrochemical theories of corrosion, Types of corrosion: galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion - Nature of the metal, Nature of the corroding environment. Corrosion control methods - Cathodic protection Methods - Sacrificial anode and impressed current methods.

UNIT-III: Energy sources: [8]

Batteries: Introduction – Classification of batteries - Primary, secondary and reserve batteries with examples. Construction, working and applications of Zn-air and Lithium ion battery. Fuel Cells -

Differences between a battery and a fuel cell, Construction and applications of Direct Methanol Fuel Cell (DMFC).

Fuels: Introduction and characteristics of a good fuel, Calorific value – Units - HCV, LCV- Dulongs formula - Numerical problems.

Fossil fuels: Introduction, Classification, Petroleum - Refining of Crude oil, Cracking - Types of cracking - Moving bed catalytic cracking. LPG and CNG composition and uses.

Synthetic Fuels: Fischer-Tropsch process, Introduction and applications of Hythane and Green Hydrogen.

UNIT - IV: Polymers: [8]

Definition - Classification of polymers: Based on origin and tacticity with examples – Types of polymerization - Addition (free radical addition mechanism) and condensation polymerization.

Plastics, Elastomers and Fibers: Definition and applications (PVC, Buna-S, Nylon-6,6). Differences between themoplastics and thermo setting plastics, Fiber reinforced plastics (FRP).

Conducting polymers: Definition and Classification with examples - Mechanism of conduction in trans-poly-acetylene and applications of conducting polymers.

Biodegradable polymers: Polylactic acid and its applications.

UNIT-V- Advanced Functional Materials: [8]

Smart materials: Introduction, Classification with examples - Shape Memory Alloys - Nitinol, Piezoelectric materials - quartz and their engineering applications.

Biosensor - Definition, Amperometric Glucose monitor sensor.

Interpretative spectroscopic applications of UV-Visible spectroscopy for Analysis of pollutants in dye industry, IR spectroscopy in night vision-security, Pollution Under Control- CO sensor (Passive Infrared detection), Raman spectroscopy (application) - Tumour detection in medical applications.

TEXT BOOKS:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010.
- 2. Engineering Chemistry by Rama Devi, Dr. P. Aparna and Rath, Cengage learning, 2025.

REFERENCE BOOKS:

- 1. Engineering Chemistry: by Thirumala Chary Laxminarayana & Shashikala, Pearson Publications (2020)
- 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi 2011.
- 3. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi 2015.
- 4. Engineering Analysis of Smart Material Systems by Donald J. Leo, Wiley, 2007.
- 5. Challenges and Opportunities in Green Hydrogen by Editors: Paramvir Singh, Avinash Kumar Agarwal, Anupma Thakur, R.K Sinha.
- 6. Raman Spectroscopy in Human Health and Biomedicine, https://www.worldscientific.com/doi/epdf/10.1142/13094
- 7. E-Content- https://doi.org/10.1142/13094 | October 2023
- 8. E-books:

https://archive.org/details/EngineeringChemistryByShashiChawla/page/n11/mode/2u

CS103ES: PROGRAMMING FOR PROBLEM SOLVING

B.Tech. I Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- 1. To learn the fundamentals of computers.
- 2. To understand the various steps in program development.
- 3. To learn the syntax and semantics of the C programming language.
- 4. To learn the usage of structured programming approaches in solving problems.

Course Outcomes: The student will learn

- 1. To write algorithms and to draw flowcharts for solving problems.
- 2. To convert the algorithms/flowcharts to C programs.
- 3. To code and test a given logic in the C programming language.
- 4. To decompose a problem into functions and to develop modular reusable code.
- 5. To use arrays, pointers, strings and structures to write C programs.
- 6. Searching and sorting problems.

UNIT - I: Overview of C:C Language Elements, Variable Declarations and Data Types, Executable Statements, General Form of a C Program, Arithmetic Expressions, Formatting Numbers in Program Output.

Selection Structures: Control Structures, Conditions, if Statement, if Statements with Compound Statements, Decision Steps in Algorithms.

Repetition and Loop Statements: Repetition in Programs, Counting Loops and the while Statement, Computing a Sum or Product in a Loop, for Statement, Conditional Loops, Loop Design, Nested Loops, do-while Statement.

UNIT - II: Top-Down Design with Functions: Building Programs from Existing Information, Library Functions, Top-Down Design and Structure Charts, Functions without Arguments, Functions with Input Arguments.

Pointers and Modular Programming: Pointers and the Indirection Operator, Functions with Output Parameters, Multiple Calls to a Function with Input/ Output Parameters, Scope of Names, Formal Output Parameters as Actual Arguments.

UNIT - III: Arrays: Declaring and Referencing Arrays, Array Subscripts, Using for Loops for Sequential Access, Using Array Elements as Function Arguments, Array Arguments, Searching and Sorting an Array, Parallel Arrays and Enumerated Types, Multidimensional Arrays.

Strings: String Basics, String Library Functions: Assignment and Substrings, Longer Strings: Concatenation and Whole-Line Input, String Comparison, Arrays of Pointers.

UNIT - IV: Recursion: The Nature of Recursion, Tracing a Recursive Function, Recursive Mathematical Functions, Recursive Functions with Array and String Parameters

Structure and Union Types: User-Defined Structure Types, Structure Type Data as Input and Output

Structure and Union Types: User-Defined Structure Types, Structure Type Data as Input and Outp Parameters, Functions with Structured Result Values, Union Types.

UNIT - V: Text and Binary File Pointers: Input/ Output Files - Review and Further Study, Binary Files, Searching a Database.

Searching and Sorting: Basic searching in an array of elements (linear and binary search techniques), Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms).

TEXT BOOKS:

1. Jeri R. Hanly and Elliot B. Koffman, Problem solving and Program Design in C 7th Edition,

2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition).

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India.
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill.
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB.
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression).
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition.
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill.

EC104ES: ELECTRONIC DEVICES AND CIRCUITS

B.Tech. I Year I Sem.

L T P C
3 0 0 3

Course Overview: This course introduces fundamental semiconductor devices and their behavior, including diodes, BJTs, and FETs. It covers their characteristics, applications, and the analysis of basic electronic circuits. The course also explores rectifiers, voltage regulation, amplifier design, and advanced semiconductor technologies like FinFETs and CNTFETs. Emphasis is placed on developing a strong foundation for analog circuit design and understanding modern device technologies in electronics.

Course Outcomes: By the end of this course, students will be able to:

CO1: Analyze the electrical characteristics and models of semiconductor diodes and apply them in rectifier and clipping circuits.

CO2: Evaluate the operation and configurations of Bipolar Junction Transistors (BJTs) and analyze their input and output characteristics.

CO3: Design appropriate biasing networks for BJTs and determine the operating point for amplifier applications.

CO4: Analyze transistor amplifier circuits using h-parameter models and assess performance for various configurations.

CO5: Analyze the structure, working, and characteristics of JFETs, MOSFETs, and advanced devices like FinFETs and CNTFETs, and compare modern device technologies.

Course Articulation Matrix

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	2	1	1	-	-	-	-	-
CO2	3	3	2	2	1	-	-	-	-	-	-
CO3	3	3	3	2	1	-	-	-	-	-	-
CO4	3	3	3	2	2	-	-	-	-	-	1
CO5	3	3	2	2	2	1	-	-	-	-	2

Syllabus:

UNIT - I:

Diode Characteristics and Applications: PN junction diode - I-V characteristics, Diode resistance and capacitance, Diode models (Ideal, Simplified, Piecewise Linear), Rectifiers - Half-wave, Full-wave (Center-tap and bridge), Capacitor filter for rectifiers, Clippers and clampers, Zener diode - I-V characteristics and voltage regulation.

UNIT - II:

Bipolar Junction Transistor (BJT): Structure and working principle of BJT, Current components and transistor action, Configurations: Common Base (CB), Common Emitter (CE), Common Collector (CC), Input and output characteristics, Determination of h-parameters from transistor characteristics.

UNIT - III:

BJT Biasing: Need for biasing and stabilization, Load line and operating point, Biasing techniques: Fixed bias, Collector-to-base bias, Voltage divider bias, Stability factors and thermal runaway

UNIT - IV:

Transistor Amplifiers: Transistor as a small-signal amplifier, h-parameter equivalent circuit, CE, CB, CC amplifier analysis using h-parameters, Approximate CE model - with and without emitter bypass capacitor.

UNIT - V:

Special Purpose Diodes: Principle of Operation of – SCR, Tunnel Diode, Varactor Diode, Photo Diode, Solar Cell, LED and Schottky Diode

Field Effect Transistors and Advanced Devices: JFET: Structure, operation, and characteristics, MOSFET: Enhancement and Depletion modes – Structure, operation, and characteristics, Advanced Devices: FinFETs - 3D structure, Scaling advantages, CNTFETs - Structure, ballistic transport, fabrication, Comparison: CMOS vs. FinFET vs. CNTFET.

TEXT BOOKS:

- 1. Millman, Jacob, and Christos C. Halkias. *Electronic Devices and Circuits*. Tata McGraw-Hill, 1991.
- 2. Boylestad, Robert L., and Louis Nashelsky. *Electronic Devices and Circuit Theory*. Pearson, 11th ed., 2013.
- 3. Sedra, Adel S., and Kenneth C. Smith. *Microelectronic Circuits*. Oxford University Press, 7th ed., 2014.

REFERENCE BOOKS:

- 1. Bell, David A. Electronic Devices and Circuits. Oxford University Press, 5th ed., 2008.
- 2. Neamen, Donald A. Electronic Circuit Analysis and Design. McGraw-Hill, 2nd ed., 2001.
- 3. Salivahanan, S., and N. Suresh Kumar. *Electronic Devices and Circuits*. McGraw-Hill Education, 4th ed., 2017.
- 4. Razavi, Behzad. Fundamentals of Microelectronics. Wiley, 2nd ed., 2013.

Taur, Yuan, and Tak H. Ning. Fundamentals of Modern VLSI Devices. Cambridge University Press, 2nd ed., 2009

EN105HS: ENGLISH FOR SKILL ENHANCEMENT

B.Tech. I Year I Sem.

L T P C
3 0 0 3

INTRODUCTION

National Education Policy-2020 aims at preparing students with knowledge, skills, values, leadership qualities and initiates them for lifelong learning. It also emphasizes language study and promotion of languages through understanding and proper interpretation. English language is central to the educational eco system. The importance of language as medium of communication for personal, social, official and professional needs to be emphasized for clear and concise expression. Teaching and learning of receptive and productive skills viz., Listening, Speaking, Reading and Writing (LSRW) are to be taught and learnt effectively in the undergraduate Engineering programs. Learners should be encouraged to engage in a rigorous process of learning to become proficient users of English language by adopting a deeply focused and yet flexible approach as opposed to rote learning.

In this connection, suitable syllabus, effective pedagogy, continuous assessments and students' involvement result in productive learning. This course supports the latest knowledge and skill requirements and shall meet specified learning outcomes. The main objectives of English language teaching and learning as medium of communication and for promotion of cultural values are embedded in this syllabus. Efforts are being made in providing a holistic approach towards value-based language learning which equips the learner with receptive as well as productive skills.

The focus in this syllabus is on skill development, fostering ideas and practice of language skills in various contexts and cultures in the areas of vocabulary, grammar, reading and writing. For this, the teachers should use the prescribed textbook for detailed study. The students should be encouraged to read the texts leading to reading comprehension. The time should be utilized for working out the exercises given after each excerpt, and also for supplementing the exercises with authentic materials of a similar kind, for example, newspaper articles, advertisements, promotional material.

LEARNING OBJECTIVES: This course will enable the students to:

- a. Improve their vocabulary.
- b. Use appropriate sentence structures in their oral and written communication.
- c. Develop their reading and study skills.
- d. Equip students to write paragraphs, essays, précis and draft letters.
- e. Acquire skills for Technical report writing.

COURSE OUTCOMES: Students will be able to:

- a. Choose appropriate vocabulary in their oral and written communication.
- b. Demonstrate their understanding of the rules of functional grammar and sentence structures.
- c. Develop comprehension skills from known and unknown passages.
- d. Write paragraphs, essays, précis and draft letters.
- e. Write abstracts and reports in various contexts.

SYLLABUS: The course content / study material is divided into **Five Units**.

UNIT -I

Theme: Perspectives

Lesson on 'The Generation Gap' by Benjamin M. Spock from the prescribed textbook titled *English for the Young in the Digital World* published by Orient

Black Swan Pvt. Ltd.

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes - Words Often

Misspelt - Synonyms and Antonyms

Grammar: Identifying Common Errors in Writing with Reference to Parts of Speech particularly

Articles and Prepositions – Degrees of Comparison

Reading: Reading and Its Importance- Sub Skills of Reading - Skimming and Scanning.

Writing: Sentence Structures and Types -Use of Phrases and Clauses in Sentences-

Importance of Proper Punctuation- Techniques for Writing Precisely -Nature and

Style of Formal Writing.

UNIT -II

Theme: **Digital Transformation**

> Lesson on 'Emerging Technologies' from the prescribed textbook titled English for the Young in the Digital World published by Orient BlackSwan Pvt. Ltd.

Homophones, Homonyms and Homographs Vocabulary:

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement

and Subject-verb Agreement.

Reading Strategies-Guessing Meaning from Context - Identifying Main Ideas -Reading:

Exercises for Practice

Writing: Paragraph Writing - Types, Structures and Features of a Paragraph - Creating

> Coherence - Linkers and Connectives - Organizing Principles in a Paragraph -Defining- Describing People, Objects, Places and Events - Classifying- Providing

Examples or Evidence - Essay Writing - Writing Introduction and Conclusion.

UNIT -III

Theme: **Attitude and Gratitude**

> Poems on 'Leisure' by William Henry Davies and 'Be Thankful' - Unknown Author from the prescribed textbook titled English for the Young in the Digital World published by Orient BlackSwan Pvt. Ltd.

Words Often Confused - Words from Foreign Languages and their Use in English. Vocabulary: Grammar:

Identifying Common Errors in Writing with Reference to Misplaced Modifiers and

Reading: Sub-Skills of Reading - Identifying Topic Sentence and Providing Supporting Ideas -

Exercises for Practice.

Writing: Format of a Formal Letter-Writing Formal Letters E.g., Letter of Complaint, Letter of

Requisition, Job Application with CV/Resume -Difference between Writing a Letter

and an Email - Email Etiquette.

UNIT -IV

Theme: Entrepreneurship

> Lesson on 'Why a Start-Up Needs to Find its Customers First' by Pranav Jain from the prescribed textbook titled English for the Young in the Digital World

published by Orient BlackSwan Pvt. Ltd.

Vocabulary: Standard Abbreviations in English - Inferring Meanings of Words through Context -

Phrasal Verbs - Idioms.

Grammar: Redundancies and Clichés in Written Communication - Converting Passive to Active

Voice and Vice-Versa.

Reading: Prompt Engineering Techniques- Comprehending and Generating Appropriate

Prompts - Exercises for Practice

Writing: Writing Practices- Note Making-Précis Writing.

UNIT -V

Theme: Integrity and Professionalism

Lesson on 'Professional Ethics' from the prescribed textbook titled English for

the Young in the Digital World published by Orient BlackSwan Pvt. Ltd.

Technical Vocabulary and their Usage- One Word Substitutes - Collocations. Vocabulary:

Grammar: Direct and Indirect Speech - Common Errors in English (Covering all the other

aspects of grammar which were not covered in the previous units)

Survey, Question, Read, Recite and Review (SQ3R Method) - Inferring the Meaning Reading:

and Evaluating a Text- Exercises for Practice

Writing: Report Writing - Technical Reports- Introduction - Characteristics of a Report – Categories of Reports Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a Technical Report.

<u>Note</u>: Listening and Speaking skills which are given under Unit-6 in AICTE Model Curriculum are covered in the syllabus of ELCS Lab Course.

(Note: As the syllabus of English given in AICTE Model Curriculum-2018 for B.Tech. First Year is Open-ended, besides following the prescribed textbook, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning in the class.)

TEXT BOOK:

1. Board of Editors. 2025. English for the Young in the Digital World. Orient Black Swan Pvt. Ltd.

- 1. Swan, Michael. (2016). Practical English Usage. Oxford University Press. New Edition.
- 2. Karal, Rajeevan. 2023. English Grammar Just for You. Oxford University Press. New Delhi
- 3. 2024. Empowering with Language: Communicative English for Undergraduates. Cengage Learning India Pvt. Ltd. New Delhi
- 4. Sanjay Kumar & Pushp Lata. 2022. *Communication Skills A Workbook*. Oxford University Press. New Delhi
- 5. Wood,F.T. (2007). Remedial English Grammar. Macmillan.
- 6. Vishwamohan, Aysha. (2013). *English for Technical Communication for Engineering Students*. Mc Graw-Hill Education India Pvt. Ltd.

CH106BS: ENGINEERING CHEMISTRY LAB

B.Tech. I Year I Sem.

L T P C 0 0 2 1

Course Description: The course includes experiments based on fundamental principles of chemistry essential for engineering students, aiming to develop practical skills and reinforce theoretical concepts.

Course Objectives

- 1. Students will understand and perform experiments based on core chemical principles relevant to engineering applications.
- 2. Students will learn to estimate the hardness of water to assess its suitability for drinking purposes.
- 3. Students will acquire the ability to perform acid-base titrations using instrumental methods such as conductometry, potentiometry, and pH metry.
- 4. Students will gain hands-on experience in synthesizing polymers like Bakelite and Nylon 6, 6 in the laboratory.
- 5. Students will learn to determine the unknown concentration of potassium permanganate (KMnO4) using a calibration curve.

Course Outcomes:

- 1. Students will develop practical skills through hands-on chemistry experiments relevant to engineering.
- 2. Students will learn to determine important parameters such as water hardness and the corrosion rate of mild steel under various conditions.
- 3. Students will be able to apply techniques like conductometry, potentiometry, and pH metry to determine concentrations or equivalence points in acid-base reactions.
- 4. Students will gain experience in synthesizing polymers such as Bakelite and Nylon-6,6.
- 5. Students will understand the working principle of colorimetry and the relationship between absorbance and concentration (Beer-Lambert Law).

List of Experiments:

- I. Volumetric Analysis: Estimation of Hardness of water by EDTA Complexometry method.
- II. Conductometry:
 - 1. Estimation of the concentration of strong acid by Conductometry.
 - Estimation of the concentration of strong and weak acid in an acid mixture by Conductometry.

III. Potentiometry:

- 1. Estimation of concentration of Fe⁺²ion by Potentiometry using KMnO₄.
- 2. Estimation of concentration of strong acid with strong base by Potentiometry using quinhydrone
- **IV. pH Metry**: Determination of an acid concentration using pH meter.
- V. Colorimetry: Verification of Lambert-Beer's law using KMnO₄.
- VI. Preparations:
 - 1. Preparation of Bakelite.
 - 2. Preparation Nylon 6, 6.
- VII. Corrosion: Determination of rate of corrosion of mild steel in the presence and absence of inhibitor

VIII. Virtual lab experiments:

- 1. Construction of Fuel cell and it's working.
- 2. Smart materials for Biomedical applications
- 3. Batteries for electrical vehicles.
- 4. Functioning of solar cell and its applications.

- 1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
- 2. Vogel's text book of practical organic chemistry 5th edition
- 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications.
- 4. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007).

CS107ES: PROGRAMMING FOR PROBLEM SOLVING LAB

B.Tech. I Year I Sem. L T P C

0 0 2 1

[Note: The programs may be executed using any available Open Source/ Freely available IDE

Some of the Tools available are: CodeLite: https://codelite.org/

Code::Blocks: http://www.codeblocks.org/
DevCpp: http://www.bloodshed.net/devcpp.html

Eclipse: http://www.eclipse.org

This list is not exhaustive and is NOT in any order of preference]

Course Objectives: The students will learn the following:

- 1. To work with an IDE to create, edit, compile, run and debug programs
- 2. To analyze the various steps in program development.
- 3. To develop programs to solve basic problems by understanding basic concepts in C like operators, control statements etc.
- 4. To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- 5. To Write programs using the Dynamic Memory Allocation concept.
- 6. To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:

- 1. formulate the algorithms for simple problems
- 2. translate given algorithms to a working and correct program
- 3. correct syntax errors as reported by the compilers
- 4. identify and correct logical errors encountered during execution
- 5. represent and manipulate data with arrays, strings and structures
- 6. use pointers of different types
- 7. create, read and write to and from simple text and binary files
- 8. modularize the code with functions so that they can be reused

PRACTICE SESSIONS:

Simple numeric problems:

- a) Write a program for finding the max and min from the three numbers.
- b) Write the program for the simple, compound interest.
- c) Write a program that prints a multiplication table for a given number and the number of rows in the table. For example, for a number 5 and rows = 3, the output should be:

 $5 \times 1 = 5$

 $5 \times 2 = 10$

 $5 \times 3 = 15$

d) Write a program that shows the binary equivalent of a given positive number between 0 to 255.

Expression Evaluation:

- a) Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement).
- b) Write a program that finds if a given number is a prime number.
- c) Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.
- d) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0

and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.

Arrays, Pointers and Functions:

- a) Write a C program to find the minimum, maximum and average in an array of integers.
- b) Write a C program that uses functions to perform the following:
 - Addition of Two Matrices
 - II. Multiplication of Two Matrices
- c) Write a program for reading elements using a pointer into an array and display the values using the array.
- d) Write a program for display values reverse order from an array using a pointer.

Files:

- a) Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.
- b) Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Strings:

- a) Write a C program that uses functions to perform the following operations:
 - I. To insert a sub-string into a given main string from a given position.
 - II. To delete n Characters from a given position in a given string
- b) Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
- c) Write a C program that displays the position of a character ch in the string S or 1 if S doesn't contain ch.
- d) Write a C program to count the lines, words and characters in a given text.

Sorting and Searching:

- a) Write a C program that uses non-recursive function to search for a Key value in a given list of integers using linear search method.
- b) Write a C program that uses non-recursive function to search for a Key value in a given sorted list of integers using binary search method.
- c) Write a C program that implements the Bubble sort method to sort a given list of integers in ascending order.
- d) Write a C program that sorts the given array of integers using selection sort in descending order
- e) Write a C program that sorts the given array of integers using insertion sort in ascending order
- f) Write a C program that sorts a given array of names.

TEXT BOOKS:

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition).

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

EN108HS: ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB

B.Tech. I Year I Sem.

L T P C 0 0 2 1

The **English Language and Communication Skills (ELCS) Lab** focuses on listening and speaking skills, particularly on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Listening Skills:

Objectives

- 1. To enable students develop their active listening skills
- 2. To equip students with necessary training in listening, so that they can comprehend the speech of people from different linguistic backgrounds

Speaking Skills:

- 3. To improve their pronunciation and neutralize accent
- 4. To enable students express themselves fluently and appropriately
- 5. To practise speaking in social and professional contexts

Learning Outcomes: Students will be able to:

- 1. Listen actively and identify important information in spoken texts
- 2. Interpret the speech and infer the intention of the speaker
- 3. Improve their accent for intelligibility
- 4. Speak fluently with clarity and confidence
- 5. Use the language in real life situations

Syllabus: English Language and Communication Skills Lab (ELCS) shall have two parts:

- a. Computer Assisted Language Learning (CALL) Lab which focusses on listening skills
- b. Interactive Communication Skills (ICS) Lab which focusses on speaking skills

The following course content is prescribed for the **English Language and Communication Skills Lab**.

Exercise - I

CALL Lab:

Instruction: Speech Sounds-Listening Skill - Importance - Purpose - Types- Barriers- Active Listening Practice: Listening to Distinguish Speech Sounds (Minimal Pairs) - Testing Exercises

ICS Lab:

Diagnostic Test – Activity titled 'Express Your View'

Instruction: Spoken and Written language - Formal and Informal English - Greetings - Introducing Oneself and Others

Practice: Any Ice-Breaking Activity

Exercise - II

CALL Lab:

Instruction: Listening vs. Hearing - Barriers to Listening

Practice: Listening for General Information - Multiple Choice Questions - Listening Comprehension Exercises (It is essential to identify a suitable passage with exercises for practice.)

ICS Lab:

Instruction: Features of Good Conversation - Strategies for Effective Communication

Practice: Role Play Activity - Situational Dialogues -Expressions used in Various Situations -Making Requests and Seeking Permissions – Taking Leave - Telephone Etiquette

Exercise - III

CALL Lab:

Instruction: Errors in Pronunciation - Tips for Neutralizing Mother Tongue Influence (MTI)

Practice: Differences between British and American Pronunciation -Listening Comprehension

Exercises ICS Lab:

Instruction: Describing Objects, Situations, Places, People and Events

Practice: Picture Description Activity – Looking at a Picture and Describing Objects, Situations, Places, People and Events (A wide range of Materials / Handouts are to be made available in the

lab.)

Exercise - IV

CALL Lab:

Instruction: Techniques for Effective Listening

Practice: Listening for Specific Details - Listening - Gap Fill Exercises - Listening Comprehension

Exercises

(It is essential to identify a suitable passage with exercises for practice.)

ICS Lab:

Instruction: How to Tell a Good Story - Story Star- Sequencing-Creativity

Practice: Activity on Telling and Retelling Stories - Collage

Exercise – V CALL Lab:

Instruction: Identifying the literal and implied meaning

Practice: Listening for Evaluation - Write the Summary - Listening Comprehension Exercises

(It is essential to identify a suitable passage with exercises for practice.)

ICS Lab:

Instruction: Understanding Non-Verbal Communication

Practice: Silent Speech - Dumb Charades Activity

❖ Post-Assessment Test on 'Express Your View'

Minimum Requirement of infrastructural facilities for ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self- study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

- i) Computers with Suitable Configuration
- ii) High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab:

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audiovisual aids with a Public Address System, a T. V. or LCD, a digital stereo – audio & video system and camcorder etc.

Note: English Language Teachers are requested to prepare Materials / Handouts for each Activity for the Use of those Materials in CALL & ICS Labs.

Suggested Software:

- Cambridge Advanced Learners' English Dictionary with CD.
- Grammar Made Easy by Darling Kindersley.
- Punctuation Made Easy by Darling Kindersley.
- Oxford Advanced Learner's Compass, 10th Edition.
- English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
- English Pronunciation in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- English Vocabulary in Use (Elementary, Intermediate, Advanced) Cambridge University

Press.

• TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS).

- 1. Shobha, KN & Rayen, J. Lourdes. (2019). *Communicative English A workbook.* Cambridge University Press
- 2. Board of Editors. (2016). *ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities*. Orient BlackSwan Pvt. Ltd.
- 3. Mishra, Veerendra et al. (2020). *English Language Skills: A Practical Approach*. Cambridge University Press
- 4. (2022). English Language Communication Skills Lab Manual cum Workbook. Cengage Learning India Pvt. Ltd.
- 5. Ur, Penny and Wright, Andrew. 2022. Five Minute Activities A Resource Book for Language Teachers. Cambridge University Press

ME109ES: ENGINEERING WORKSHOP

B.Tech. I Year I Sem. L T P C 0 0 2 1

Prerequisites: Practical skill

Course Objectives:

- 1. To introduce students to basic manufacturing processes and workshop practices.
- 2. To provide hands-on training in carpentry, fitting, welding, sheet metal, and machining
- 3. To develop skills in using hand tools and measuring instruments.
- 4. To enhance safety awareness and proper handling of workshop equipment.
- 5. To build a foundational understanding of industrial production and fabrication.

Course Outcomes: At the end of the course, the student will be able to:

- 1. Understand the basic manufacturing processes and operations.
- 2. Use hand tools and equipment safely and efficiently.
- 3. Perform basic operations in carpentry, fitting, welding, sheet metal work, and machining
- 4. Read and interpret workshop drawings
- 5. Develop teamwork, time management, and quality awareness in a workshop environment.

1. TRADES FOR EXERCISES: At least two exercises from each trade:

- i. Carpentry: T- Lap Joint, Dovetail Joint, Mortise and Tenon Joint
- ii. Fitting: V- Fit, Dovetail Fit and Semi- circular fit
- iii. **Tin Smithy**: Square Tin, Rectangular Tray and Conical Funnel
- iv. Foundry: Preparation of Green Sand Mould using Single Piece and Split Pattern
- v. Welding Practice: Arc Welding and Gas Welding
- vi. House wiring: Parallel and Series, Two-way Switch and Tube Light
- vii. Black Smithy: Round to Square, Fan Hook and S- Hook
- **2. TRADES FOR DEMONSTRATION AND EXPOSURE:** Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:

- 1. Workshop Practice, B. L. Juneja, Cengage Learning India, 1st edition, 2015.
- 2. Workshop Practice Manual, K. Venkata Reddy, BS Publication, 6th Edition, Rpt.2025.

- 1. Workshop Manual, K. Venugopal, Anuradha Publications, 2012th edition, 2012.
- 5. hers. Cambridge University Press.